
EikoNet: Solving the Eikonal equation with Deep
Neural Networks

Jonathan D. Smith, Kamyar Azizzadenesheli, Zachary E. Ross

Abstract

The recent deep learning revolution has created enormous opportunities for accelerating compute capabilities in the context
of physics-based simulations. Here, we propose EikoNet, a deep learning approach to solving the Eikonal equation, which
characterizes the first-arrival-time field in heterogeneous 3D velocity structures. Our grid-free approach allows for rapid
determination of the travel time between any two points within a continuous 3D domain. These travel time solutions are allowed to
violate the differential equation—which casts the problem as one of optimization—with the goal of finding network parameters that
minimize the degree to which the equation is violated. In doing so, the method exploits the differentiability of neural networks
to calculate the spatial gradients analytically, meaning the network can be trained on its own without ever needing solutions
from a finite difference algorithm. EikoNet is rigorously tested on several velocity models and sampling methods to demonstrate
robustness and versatility. Training and inference are highly parallelized, making the approach well-suited for GPUs. EikoNet
has low memory overhead, and further avoids the need for travel-time lookup tables. The developed approach has important
applications to earthquake hypocenter inversion, ray multi-pathing, and tomographic modeling, as well as to other fields beyond
seismology where ray tracing is essential.

Index Terms

Geophysics, Partial Differential Equations, Travel-Time, Ray-Tracing.

SUBMITTED TO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 1

EikoNet: Solving the Eikonal equation with Deep
Neural Networks

I. INTRODUCTION

Three-dimensional ray tracing is a fundamental component
of modern seismology, having direct applications to earth-
quake hypocenter inversions [8], seismic tomography [29],
and earthquake source properties [4]. These derived products
further form the basis for many downstream seismological
applications. The Eikonal equation is a well-known nonlinear
partial differential equation that characterizes the first-arrival-
time field for a given source location in a 3D medium [17].
The Eikonal formulation can be solved with several finite dif-
ference algorithms [27], [18], [20], with varying computational
demands and stabilities to the solutions.

Recent advances in deep learning have shown to be
extremely promising in the context of physics-based
simulations [7], [31]. This technology has started to be
applied to geophysics as well, for example, to predict the
acoustic wave response of a medium given a velocity model
as input [15], forecast the next time step of a wavefield
conditional on its history [15], and accelerate viscoelastic
simulations [5]. However, these techniques rely on inputs from
pre-computed physics based models, which could themselves
contain modeling-based artifacts and input bias. Instead, we
wish to learn the underlying physics by incorporating the
formulations into the neural network architecture and loss
function. These physics-based procedures [22], [28], [19],
[1], [13] take advantage of the backpropagation procedure to
compute the gradient of the neural network output relative to
the input terms. Such physics-informed neural networks [22],
[19] (PINNS) are mesh independent, giving a continuous
function output related to the inputs. These techniques have
been used to learn the parametrization for formulations of
the Burgers, Schrodinger, and Navier-Stokes equations, with
comparisons made to the numerical derivatives [22].

In this paper, we propose EikoNet, an approach to solving
the factored Eikonal equation. EikoNet can be trained to learn
the travel-time between any two points in a truly continuous
3D medium, avoiding the use of grids. We leverage the
differentiability of neural networks to analytically compute the
spatial gradients of the travel-time field, and train the network
to minimize the difference between the true and predicted
velocity model for the factored Eikonal formulation. EikoNet
is massively parallelized and therefore well-suited for GPUs,
has low memory overhead, and avoids the need for travel-
time lookup tables. Additionally, EikoNet has several novel
advantages that are not currently offered with conventional
finite differencing schemes.

II. EIKONAL FORMULATION

The Eikonal equation is a nonlinear first-order partial differ-
ential equation representing a high-frequency approximation
to the propagation of waves in heterogeneous media [17]. The
equation takes the general form;

‖∇Ts→r‖2 =
1

V (~xr)
2 = S (~xr)

2 (1)

where ‖ · ‖2 is the Euclidean norm, Ts→r is the travel-time
through the medium from a source location s to a receiver
location r, Vr is the velocity of the medium at the receiver
location, Sr is the slowness of the medium at the receiver
location, and ∇r the gradient at the receiver location.

The value of travel-time is computed by minimizing the
misfit of a travel-time field that satisfies the user imposed
velocity model, with the additional boundary condition that
the travel-time at the source location equals zero, Ts→s = 0.
Solutions to equation 1 have a strong singularity at the source
location [25], leading to numerical errors close to the source.
To mitigate such singularity effects, a factored formulation
is often used, with solutions representing the travel-time
deviation from a homogeneous medium with V = 1 [25].
The factored travel-time form can then be represented by:

Ts→r = T0 · τs→r (2)

where T0 = ‖ ~xr − ~xs‖, representing the distance function
from the source location, and τ the deviation of the travel-
time field from a model travel-time with homogeneous unity
velocity. Substituting the formulation of equation 2 into
equation 1 and expanding using the chain rule, then the
velocity can be represented by;

V (~xr) =

[
T 2
0 ‖∇

r
τs→r‖2 + 2τs→r (~xr − ~xs) · ∇

r
τs→r + τ2s→r

]− 1
2

.

(3)
The partial differential terms in equation 3 are typically

solved using a finite-difference approach and will be discussed
in Section IV

III. METHODS

A. Network architecture and training

Our approach to solving the Eikonal equation trains a deep
neural network, fθ, to predict the travel-time field, τ , between
an input pair of source-receiver coordinates, ~x = [~xs, ~xr]. The
deviation of the travel-time field is then represented by,

τ = fθ(~x), (4)

with the corresponding travel-time between source and re-
ceiver location represented by equation 2.

SUBMITTED TO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 2

If τ was known, a neural network could be trained for a
catalog source-receiver pairs. However, τ itself is unknown,
being the solution to the equation that we want to solve.
Instead, only the velocity model and a differential equation
specifying how τ relates to V are known, but this can be used
to train the neural network. Thus, we cast the problem as one
where we aim to accurately predict the local velocity, assuming
that the output of fθ is indeed τ ; and use this value to compute
V from equation 3, defining this predicted velocity as V̂ .
Here, we exploit the differentiability of deep neural networks
to analytically determine the spatial gradient of equation 4
with respect to ~xr. This is possible because the layers and
activations of the neural network are chosen precisely to be
analytically differentiable. In this study, we use Pytorch to
calculate the gradients and perform all network training.

Solving the factored Eikonal equation is therefore reduced
to training a neural network with supervision on the velocity
model, by iteratively updating the parameters θ to minimize
some loss function. Once trained, the Eikonal equation is no
longer needed, as fθ outputs τ directly (Figure 1a). In the
process, the details of the velocity model will be encoded
in the network, requiring the network to be re-trained if the
velocity model is to be changed. As such, the algorithm is
fully capable of solving the Eikonal equation from scratch,
without needing to run a separate finite-difference simulation
to generate training data.

The model architecture is a feed-forward network consisting
of a series of residual blocks with fully-connected layers [10]
followed by nonlinear units (Figure 1a). We use Exponential
Linear Unit (ELU) as the activation [3] function on all hidden
layers. This activation was chosen as the method is aligned
with the notion of natural gradients, which uses the geometry
induced by Fisher Information to adjust the gradient direction
[3], pushing the activation to stay in a region that is not
saturated.

The optimal number of layers (or residual blocks) generally
depends on the complexity of the training data. Here, we use
10 residual blocks, which was found to provide the best results
for the tests herein, comprising a total of 7913249 parameters
to be optimised. For highly complex velocity structures, this
number may need to increase.

The neural network learns the travel time between any
source receiver pair and must contain an adequate sampling
from across the 3D medium. The input features are organized
into a vector of six components,

~x = [Xs, Ys, Zs, Xr, Yr, Zr] , (5)

where X , Y , Z are the Cartesian coordinates of the source or
receiver. The features are paired with the seismic velocity at
the receiver location,

y = V (Xr, Yr, Zr) (6)

A training dataset therefore consists of many (~x, y) samples,
taken from across the 3D volume (Figure 1c). We discuss how
these datasets are constructed in the following section.

The misfit between the predicted V̂ , as determined from
equation 3, and observed, V , velocities are then minimised
using a mean-squared error loss function,

L = ‖V − V̂ ‖2. (7)

We use the Adam optimization algorithm for training with a
learning rate of 5×10−5[12] (Figure 1d). The batch and dataset
size are set to 752 and 106 respectively, with their variability
discussed further in Section VI-B. The dataset is sepearted
into training and validation data, with the validation dataset
at 10% of the total size. An addition test dataset is created
representing 104 source-receiver pairs which are blind to the
user prior to loss calculation. For all the simulations we use
a single Nvidia Tesla V100 GPU, with models taking 66s per
epoch given the parameters above. The effects of parameter
values on computation cost can be found in Section VI-B

Once trained the network can be applied to a series of user
defined source-receiver pairs to determine the travel-time and
predicted velocity, as shown in Figure 1e.

B. Building a training dataset

Our approach builds a training dataset by randomly sam-
pling source and receiver points from the continuous 3D
medium and labeling each with the velocity at the receiver
location. Since the velocity model is gridded, we use linear
interpolation to map these values to a continuous domain. In
this study, we explore three different methods for sampling
the velocity model. In these formulations we investigate two
sampling techniques from the classical theory of Bertrand
paradox, sampling random points across the model space and
sampling points at random distances.

1) Random Distance: The dataset is composed of a series
of source locations selected randomly across the model space.
Once a source point is selected, a receiver point in space is
sampled at a random distance away from the source location
along a random vector. This method inherently allows the
source-receivers pairs to have a distance distribution that is
uniform across the model space.

2) Random Locations: The dataset could also be composed
of a series of randomly selected source and receiver locations.
This allows for a more random distribution of points across
the model space, but inherently has a non-uniform distribution
of distances between source-receiver points, with a lower
sampling at short distances, as expressed by the Bertrand
Paradox.

3) Weighted Sampling: In complex velocity contrasting
models the training procedure could quickly learn areas of
simple velocity variations, and we act to improve the training
efficiency of this procedure by allowing dynamic resampling
of the training source-point pairs for values of greatest misfit.
For the first epoch of training we minimise the misfit between
the actual and predicted velocity estimates using a L2-norm,
but also determine a importance weight parameter, w, for each
training sample defined by:

w =

∣∣∣V̂ − V ∣∣∣
V

. (8)

SUBMITTED TO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 3

where V̂ is the neural-network predicted velocity value and
V is the actual imposed velocity model. The weight value
is high for the samples with the greatest relative misfit.
For subsequent training epochs training samples are selected
based on the weight value normalized by the maximum
weight in the training dataset. To mitigate stagnation in the
extremes of the weight distribution we project the weights
between a user defined minimum and maximum, represented
by [min,max] = [0.1, 0.9]. This bound was chosen to mitigate
the undersampling of regions with low misfit and oversampling
of regions that could contain singularities.

C. Model verification

The accuracy of the solution to the Eikonal equation is given
directly by the loss, which quantifies the degree to which the
solution violates the PDE in a least squares sense. Thus, after
training is finished, we can predict the travel time to all points
desired within the 3D medium and use equation 1 to calculate
the learned velocity model. Comparing the learned velocity
model to the actual velocity model provides a visual and
rigorous quantitative approach to understanding the accuracy
of the solution (Figure 1e).

IV. BASELINES

In this section we discuss some current approaches for
solving the Eikonal formulation. While there have been
many techniques developed for solving the Eikonal equation,
a number of these can be broadly classified as either Fast
Marching Methods (FMM) or Fast Sweeping Methods (FSM).
The FMM is a grid based numerical scheme that uses a
special finite difference operator to track the evolution of the
minimum travel-time using an advancing interface scheme
[23], [20]. In contrast, the FSM is an iterative method for
solving the Eikonal equation via upwind differencing using a
Gauss-Seidel iteration scheme [30]. This method groups the
wavefronts by the sweeping directions in addition to meeting
the requirement of increasing travel-times orthogonal to the
wavefronts. Typically this sweeping procedure is implemented
6-times, for each of the positive and negative directions in the
Cartesian coordinate system. As this method does not have to
track an advancing interface, the computational cost is lower
than the FMM, although this procedure can breakdown in
the presence of strongly heterogenous velocity structures [2].
A more in-depth comparison between the FMM and FSM
methods computational costs and solution misfit can be found
in [2].

Throughout this study we utilize the python FMM as a
baseline, since it is less sensitive to sharp velocity contrasts
with only minor differences in the computational time to the
Fast Sweeping Methods [2]. To compute the FMM travel-
times we use the CPU toolkit scikit-fmm (https://pythonhosted.
org/scikit-fmm/) to formulate the travel-time from a source
location on a receiver geometry at 0.1km grid spacing in
the X,Y, Z dimensions. The root-mean squared (RMS) travel-
time difference between the FMM and EikoNet approaches is
calculated for each of the models. The FMM simulations are

only used for comparison and are not used in the training of
the neural network.

V. VELOCITY MODEL EXPERIMENTS

Outlined are a series of experiments designed to demon-
strate the versatility of our approach for learning travel time
fields in complex 3D velocity models. We consider four
different velocity models and examine the performance of the
trained network. Each network is trained with a batch size
of 752, using a dataset with 106 random distance source-
points pairs with a weighting range of [0.1, 0.9]. The effects
of dynamic sampling and weighting are discussed further in
Section VI.

A. Homogeneous Velocity

The first model we consider is a homogeneous 3D ve-
locity structure with a value of 5km/s (Figure 2a). For
demonstration purposes, a source is placed at [X,Y, Z] =
[10km, 10km, 1km], with both X − Z and X − Y slices of
the travel time field shown. At each receiver point, we plot the
learned velocity using equation 1, and use this to determine the
percent error. For comparison, we also show the FMM solution
calculated on a grid of receivers with 0.1km grid spacing in
the X ,Y and Z dimensions, providing a travel-time root-mean-
squared with the EikoNet travel-times. The training loss goes
to zero after 110 training epochs, showing that the network
has learned the travel time field perfectly. When comparing the
EikoNet solution with the analytical solution, the RMS travel-
time error is zero. The FMM solution has a RMS travel-time
error of 0.0113s.

B. Graded Velocity

Next, we consider a velocity model that increases linearly
with depth (Figure 2b). The model increases from 3km/s at
the surface, to 7km/s at 20km depth. Comparison with the
conventional finite-difference scheme shows good agreement,
with a mean difference between imposed and recovered ve-
locity model of 0.00209km/s. The RMS travel-time with the
FMM solution reaches a value of 0.0189s, and 0.0072s with
the analytical solution.

C. Block Model

The third test conducted is a 3D model containing a central
cube embedded within a homogeneous background (Figure
2c). The cube has a constant velocity of 7km/s, while the
background velocity is 5km/s. Here, the neural network
approach has excellent misfit between the actual and learned
velocity, with only minor disagreement close to sharp velocity
gradients. The neural-network travel-time field is similar to
that of the finite-difference scheme, with the effects of the
sharp velocity contrast shown in the deflection of the travel-
time fronts, a low travel-time RMS of 0.0311s, and a low mean
velocity difference of 0.094km/s. This model demonstrats
that the neural network approach is able to reconcile even
difficult cases with sharp velocity changes of 20% of the mean
value.

https://pythonhosted.org/scikit-fmm/
https://pythonhosted.org/scikit-fmm/

SUBMITTED TO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 4

s rT

xs

xr

s r
r
2VT 2=_
1Δ

r

s2r2
s4

r4r1
s1
s3

r3
X

Z

Y
00

20

020

20

D
en
se

La
ye
r-

32

D
en
se

La
ye
r-

51
2

x 8

D
en
se

-5
12

D
en
se

-5
12

D
en
se

-5
12

Residual Block
No 1

EL
U

EL
U

D
en
se

-5
12

D
en
se

-5
12

D
en
se

-5
12

Residual Block
No 10

EL
U

EL
U

D
en
se

La
ye
r-

51
2

EL
U

EL
U

EL
U

D
en
se

La
ye
r-

32

Bac
kpr

opa
gati

on

Neural Network

xs

xr

s rτΔ

r

s rτ

10 20010 200

0

10

20

Modeled VelocityTravel-Time

xs

xr
rVs rTF

Inputs Network Outputs

40 1 2 3 5
VelocityTravel-Time

6

Training Loss

Validation Loss

Epoch

Loss

010-5

-4

-3

-2

10

10

10

50 100 150 200

L2r
ObsV r

PredVLoss =

Network Formulationa

Formulationb Model Samplingc

Output Inspectione

Trainingd

Fig. 1. Overview of processing workflow. (a) Neural network architecture composed of fully-connected layers and residual blocks. Each residual block is
composed of 3 fully-connected layers with 512 neurons. ELU activations are applied on all hidden layers. (b) Summary of Eikonal equation for Ts→r and
Vr . (c) Sampling of source-receiver pairs across the 3D volume to build the training dataset. (d) Network training through the minimization of loss function
relating predicted and observed velocity values. (e) Inspection of neural network outputs by passing user defined source receiver pairs.

D. Checkerboard Velocity

The fourth test conducted contains a 3D checkerboard,
which we use to demonstrate that the proposed algorithm is
able to reconcile positive and negative velocity anomalies vary-
ing spatially within the domain. The velocity varies between
6km/s and 4km/s, with a grid spacing of 6km, meaning that
the model is not symmetrical about the central point (Figure
2d). We compare the solution with the finite-difference scheme
and actual velocity model showing that the deep learning
approach is able to reconcile the velocity model with a mean
velocity difference of 0.19km/s and a travel-time RMS of
0.0342s.

E. Industry velocity Model - Marmousi2

The final velocity model that we test is the Marmousi2
two-dimensional model. The Marmousi2, expanding on the
original Marmousi model [26], is based on a geophysical
profile through the North Quenguela Trough in the Cuanza
Basin, Angola. This model represents a 17km by 3.5km cross-
section of strongly heterogeneous velocity contrasts attributed

to changes in subsurface geology, offsets from fault-structures
and reservoir levels [14]. We investigate the specific use of
EikoNet on the S-wave velocity, as shown in Figure 3a. Due to
the complexity in the velocity structure we expand our network
to use 20 residual blocks, to enable EikoNet to encapsulate
even the smallest resolution velocity contrasts. The network is
trained across 400 epochs with 1000 batches of 752 pairs ran-
domly sampled per epoch. We apply this method to minimise
the undersampling on sharp velocity contrasts, expected from
a fixed sample dataset. Training for the 400 epochs required
a total of ∼ 6hrs on a single Nvidia V100 GPU. Figure
3a,3b and 3c represent the EikoNet travel-time and velocity
fields for a series of source locations, on a 0.001km grid
spacing. For comparison FMM finite-difference travel-time
simulations are created for each of the source locations on the
same point grid spacing. Travel-time RMS is computed with
values ranging between 0.34−0.42s, and mean velocity model
difference of 0.17km/s. These simulations demonstrate that
the EikoNet formulation is able to reconcile the broad scale
sharp velocity contrasts of the complex subsurface geology,

SUBMITTED TO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 5

Z

X

X

X

X

X

X

000 20 20

20000 20 20

20

20

0

Velocity
1

0

Y

Z

X

X

X

X

X

X

000
20

20 20

200020 20

20

20

0

3 5
Velocity

7 9

0

Y

Z

X

X

X

X

X

X

000
20

20 20

20000 20 20

20

0

20

4 5
Velocity

6 4

0

Y

Z

X

X

X

X

X

X

000
20

20 20

20000

20

0

5
Velocity

6

b Graded velocity model
Finite-Difference &
Actual Velocity

Neural Network &
Learned Velocity

Velocity Model
Difference

Finite-Difference &
Actual Velocity

Neural Network &
Learned Velocity

Velocity Model
Difference

Finite-Difference &
Actual Velocity

Neural Network &
Learned Velocity

Velocity Model
Difference

Finite-Difference &
Actual Velocity

Neural Network &
Learned Velocity

Velocity Model
Difference

d Checkerboard velocity modelc Block velocity model

a Homogeneous velocity model

% Diff
0 20-20

% Diff
0 20-20

% Diff
0 20-20

% Diff
0 20-2054 6

0

20

Y

Travel-Time RMS Analytical = 0s

Travel-Time RMS = 0.0189s

Travel-Time RMS Analytical = 0.0072s

Travel-Time RMS = 0.0311s Travel-Time RMS = 0.0342s

Fig. 2. Velocity model experiments with comparison to finite-difference and imposed velocity models. Left panels represent the X-Z and X-Y slice from
the imposed velocity model, overlayed by the finite-difference expected travel-time. Middle panels represent the X-Z and X-Y slice from the neural network
recovered velocity model and neural-network travel-time. Right panels represent X-Z and X-Y slice velocity models differences between the imposed and
recovered velocity model

as shown on the edges of the velocity model, but are unable
to reconcile the sharp small scale velocity contrasts, as shown
at the centre of the model. An under representation of these
features is expected to be attributing to the 0.34−0.42s travel-
time variations between the FMM and EikoNet travel-time
formulations. Although misfit still remains we envisage that
future research in more complex dynamic sampling schemes,
with an adaptive sampling around sharp velocity contrasts and
velocity misfit, could help mitigate the under representation of
these small scale sharp velocity features.

VI. SAMPLING EXPERIMENTS

Having demonstrated that deep neural networks can indeed
learn to directly solve the Eikonal equation, we now examine

the effect of the sampling scheme on the learned solution.
Here, we use the block velocity model from the previous sec-
tion and train separate models using each of the three sampling
techniques described in Section III-B. We also separately test
how the total number of training samples and batch size affect
the performance.

A. Sampling Schemes

Figure 4 shows the validation results for each of the three
sampling methods. The weighted random sampling approach
achieves the lowest loss of the three sampling methods, yet
converges in a similar number of training epochs. However,
the other two methods still perform well, as the differences in

SUBMITTED TO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 6

0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0
Distance (km)

0.5

1.0

2.0

1.5

2.5

3.0

0

D
ep
th
(k
m
)

0.5

1.0

2.0

1.5

2.5

3.0

0

D
ep
th
(k
m
)

0.5

1.0

2.0

1.5

2.5

3.0

0

D
ep
th
(k
m
)

0.5

1.0

2.0

1.5

2.5

3.0

0

D
ep
th
(k
m
)

4.5

3.5

4.0

3.0

Ve
lo
ci
ty
(k
m
/s
)

2.5

2.0

1.5

(c)

(d)

(b)

(a)

RMS Travel-Time Difference = 0.39s

RMS Travel-Time Difference = 0.34s

RMS Travel-Time Difference = 0.42s

Imposed Velocity Model

Fig. 3. Marmousi2 two-dimensional travel-time formulations using EikoNet and Finite-Difference Methods. (a) represents a colormap of the imposed 2D
velocity model. (b) the recovered travel-time and velocity model fields from a source location at [0km, 0km] to a point grid at 0.001km spacing. Colormap
represents the recovered velocity and white contours represent the travel-time at 0.1s spacing. (c) and (d) represent a similar plot to (b) but with the different
source locations of [0km, 1.1km] and [0km, 2.25km] respectively.

validation loss are relatively small. For the random location
procedure there is greater misfit closer to the source location,
expected due to the bias of the lengthscale to longer distances
due to the Bertrand Paradox, and as such we use the random
distance metric for sampling. Although the weighted sampler
has little effect on the loss values and travel-time RMS
value, we expect that the weighted random sampling will be
of increasing importance in very complex 3D models and
recommend it for selection of source-point pairs.

B. Size of training dataset

We investigate how the number of training samples and
batch size affect the network performance (Fig. 5). We re-
run the simulation with three dataset sizes (104, 105 and
106) and three batch sizes (64, 256 and 752), inspecting
the recovery of the final solution and the validation loss for
each simulation. Figure 5i shows the variation of the optimal
recovered solution for the different batch and sample sizes,
with columns representing the increasing number of samples
and rows the increase batch size. Figure 5j shows the validation
loss for each of the separate simulations with the line colour
corresponding to the panel color.

From Figure 5, it is clear that the number of training samples
has a profound influence on the network performance. The
dataset with 106 samples achieves a loss that is about an
order of magnitude lower than the dataset with 104 samples. In
addition, through inspection of the recovered velocity model
we can see that the low sample size is unable to reconcile
the complex velocity structure of the sharp velocity contrast
of the block model. Therefore, it is crucial that an adequate
number of training samples number be used when constructing
the dataset. Future work could investigate dynamic sampling
of the velocity model space to reconcile regions of greatest
misfit.

While the batch size is seen to influence the training results
early on, the final best loss value is seen to be insensitive
to this hyperparameter (Figure 5). This is important as larger
batch sizes are much more computationally efficient.

VII. FUTURE APPLICATIONS

In this section we discuss the application of EikoNet to a
series of travel-time required problems, outlining the advan-
tage of EikoNet over conventional Finite-difference methods
and how these procedures would be implemented.

SUBMITTED TO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 7

25

10-2

-3

-4

-5

10

10

10

50 75 100 125 150 175 200
Epoch

Lo
ss

0

10Z

20

0

10Z

20

Travel Time RMS = 0.0311s
0

10Z

20100

20100

20100 20100

20100

201002010

20100

20100

0

X X X

X

20

Random Length - Validation Loss
Random Length - Test Loss

Random Length - Training Loss

Random Loc - Validation Loss
Random Loc - Test Loss

Random Loc - Training Loss

Weighted Random Len - Validation Loss
Weighted Random Len - Test Loss

Weighted Random Len - Training Loss

4 5
Velocity

6 -20 0
% Diff

20

R
an

do
m

D
is

ta
nc

e
R

an
do

m
Lo

ca
tio

n
W

ei
gh

te
d

R
an

do
m

D
is

ta
nc

e

S

P

Random
Source
Location

Random
Distance

S

P

Random Source Location

Source - point
pairs sample
weighting
based on misfit

Random
Distance

S

P

Random
Source
Location

Random Point
Location

Schematic Predicted Misfit Travel Time RMS = 0.0276s

Schematic Predicted Misfit Travel Time RMS = 0.0652s

Schematic Predicted Misfit

Fig. 4. Sampling schemes and their influence on the network performance. Left Column represents a schematic of the different type of sampling, Middle
Column represents the learned velocity model for each simulation and Right Column represents the misfit between predicted and imposed velocity model.
Bottom Panel represents the training, validation, and testing loss for each of the simulations.

SUBMITTED TO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 8

4 5
Velocity

6

250

10
-2

-3

-4

-5

10

10

10
50 75 100 125 150 175 200

Epoch

Lo
ss

Travel-Time RMS = 0.0413s

Time per Epoch = 60s(b)

Time per Epoch = 1.5s

Travel-Time RMS = 0.151s

(d) Time per Epoch = 18s

Travel-Time RMS = 0.0689s

(e) Time per Epoch = 155s

Travel-Time RMS = 0.242s

Travel-Time RMS = 0.0242s

(f)

Time per Epoch = 0.75s

Travel-Time RMS = 0.152s

(g) Time per Epoch = 6s

Travel-Time RMS =0.0645s

(h) Time per Epoch = 66s

Travel-Time RMS = 0.0311s

(i)

Z
0

10

20
0

10

20
0

10

20

X
20100 20100

Number of Samples

1 x 104 1 x 105 1 x 106
B
at
ch

Si
ze

752

256

64

20100
Time per Epoch = 6s

Travel-Time RMS = 0.108s

(a)

Travel-Time RMS = 0.0215s

Time per Epoch = 495s(c)

(j) Validation Loss
Test Loss

Line color relates to corresponding
figures above

Fig. 5. Training loss effects with changing sample number and batch size. Panels (a) - (i) represent the different models runs, with number of samples
increasing by columns left to right and batch-size increasing by rows from top to bottom. Panel (j) represents the validation loss, along with test loss for each
of the separate model runs with color matching the panel labels.

SUBMITTED TO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 9

A. Earthquake Location

In earthquake location theory a series of seismic instruments
are used to record the arrival time of the incoming seismic
wave. These instrument arrival times are then inverted using
a velocity model to determine an earthquake location and
location uncertainty. In recent years advances in seismolog-
ical instrumentation have allowed for the incorporation of
Distributed Accoustic Sensing (DAS), using optical fibres
as a series of non-discretized station locations [24]. Current
travel-time finite-difference techniques are not tractable for
handling the tens of thousands of virtual receivers that DAS
arrays provide. This would require a large computational cost
and disk storage space. In comparison our machine learning
technique scales independently of the number of receivers, has
a compact storage footprint, and can rapidly evaluate forward
predictions from the network.

B. Ray Multipathing

The Eikonal formulation represents the first arrival between
source and receiver locations. However, in complex velocity
models sharp gradients in the velocity structure can produce
a multi-pathing effect with the energy partitioned between
multiple ray paths. Rawlinson et al. [21] acted to mitigate this
effect by employing FMM to track the evolution of the seismic
wavefront for a narrow band of nodes, representing a interface
of interest. Once the outgoing wave traverses one of these
node locations an additional simulation is triggered and the
combined wavefield used to determine a possible secondary
pathway. The deep learning approach can be adapted to include
additional secondary arrivals by determining the travel-time
from two separate source locations to the same point in space.
Figure 6a and 6b represent the travel-time field from the two
source locations to a series of points within the block model
velocity experiment, but now altered with a slow velocity
centre and faster velocity background. By combining the
travel-time for the source locations to each of the points we
acquire the combined travel-time field as shown in Figure 6c.
By taking the gradient of this combined-travel time across
the network relative to the receiver locations (Figure 6d)
we can determine if the points are stationary [21], having
a gradient value close to zero, and therefore representing a
possible secondary phase arrival pathway. EikoNet is able to
quickly formulate travel-time fields and take gradients relative
to the receiver locations with each possible multipathing point
calculated in 7s for 1× 106 points on a single CPU, making
this procedure beneficial for multipathing simulations.

C. Tomographic Modeling

For tomographic inversions which undergo many iterations
successively, new travel-time fields must be computed from
scratch for each iteration. Our approach allows for the neural
network model from the previous iteration to be used as the
starting point for the next training procedure, which could
rapidly converge to the new velocity model if the perturbations
are relatively small. This would effectively remove ray tracing
as a computational burden from this part of the tomography,

as nearly all of the compute time would be spent on the very
first tomography iteration. We outline the use of a transfer
learning technique on the Block model velocity experiment,
comparing the training of a model from scratch relative to
updating originally trained Homogeneous model. Figure 7a
demonstrates the comparison of the returned models for a
series of training snapshots. Figure 7b demonstrates that the
transfer learning approach is ∼ 3 − 4× faster than training a
full model from scratch.

The computation cost in the training procedure is in learning
the complexities of the velocity model space. If the velocity
model is an unknown but the user has some prior knowledge
of possible arrival time differences, then this approach could
be updated to do some form of tomographic inversion. This
procedure instead would learn the velocity model to fit some
known travel-time values. We perceive that this addition can
be made in the loss function term itself, where an additional
loss term can be used to update the velocity model to try and
mitigate known observations. Prior finite-difference methods
would have difficulty with this procedure as the travel-time
field would have to be recalculated for each update to the
velocity model.

VIII. DISCUSSION AND CONCLUSION

We have demonstrated that deep neural networks can solve
the Eikonal equation to learn the travel-time field in hetero-
geneous 3D velocity structures. The method has been shown
to produce solutions that are consistent with those of the Fast
Marching Method.

Finite-difference approaches require computing the travel
time field separately for every source location of interest, with-
out any ability to pass along knowledge about the wavefield or
velocity structure between simulations. The computation cost
for the finite-difference approach therefore increases based
on the number of source locations and receiver nodes, with
the storage of these travel-time tables increasing drastically
with grid size. The deep learning approach instead is able to
learn from and generalize the knowledge acquired between
multiple source locations, as much of the structure of the
problem is highly similar. For example, if two sources are
placed very close to each other, the travel-time field will be
generally quite similar between them, and the information
learned from solving the equation for the first source can be
used to more rapidly learn the solution for the second source.
This is not the case for fast-marching methods and only holds
for small distances in fast-sweeping methods. Implicitly, this
means that the neural network is learning the velocity model.
The disk storage size required is equal to the size of the
neural network (∼ 90MB for 10 residual layers) as only the
weights of the network have to be retained. For more complex
velocity structures the neural network size may required a
larger model, with the disk storage scaling by a linear function
of the network size. However, for finite-difference approaches
the storage size scales with the product of the number of
source and nodal points, so for a complex velocity structure the
model would require a fine-resolution grid spacing or dynamic
meshing, making this method intractable with large large look-
up table storage sizes. One of the distinguishing features of

SUBMITTED TO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 10

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Tr
av

el
-T

im
e

(s
)

0.0 10.0 20.0

0.0

10.0

20.0
0.0 10.0 20.0

X X

Z

Source 1 Source 2

0.0 20.010.0

0.0

10.0

20.0

3.9

4.0

3.8

3.7

3.6

3.5

C
om

bi
ne

d
Tr

av
el

-T
im

e
(s

)

X

Z

0.0 10.0 20.0

0.0

10.0

20.0 0.0
0.2
0.4
0.6

0.8
1.0

1.2
1.4
1.6
1.8

S
ta

tio
na

ry
P

oi
nt

Va
lu

e

X

Z

0.0 10.0 20.0

0.0

10.0

20.0

6.0

5.0

4.0

Ve
lo

ci
ty

(k
m

/s
)

X

Z

S1 P

S2

(c) Combined Travel-Time Field (d)Stationary Point Values

(b)Travel-Time Fields(a) Velocity Model

Ray Paths

X X

Fig. 6. Seismic ray multipathing procedure applied to an adapted block model velocity experiment with low velocity block and high velocity background. (a)
Imposed velocity structure and schematic of the travel-times between source locations S1 and S2, to some point P . (b) Travel-times from each of the receiver
locations to a grid of receiver locations. (c) Combined travel-time field from the source locations to each of the receiver locations, TTP . (d) Gradient of the
combined travel-time field at each of the receiver locations, ∂TTP

∂P
. Stationary points are represented where this value is zero, with these points representing

possible secondary arrival ray paths.

EikoNet is that the travel time solutions are valid for any two
points within the 3D continuous domain. This means it is
never necessary to store a travel time grid and interpolate
it to achieve the desired result away from the grid nodes.
Here, EikoNet automatically learns an optimized interpolation
scheme during the training process, drawing on context from
across the entire dataset.

A second important aspect is that solutions to the Eikonal
equation, as learned by EikoNet, are guaranteed to be differ-
entiable back through the network with respect to the source
or receiver locations. This has a variety of important practical
applications, such as in locating earthquakes, as the inverse
problem can be formulated as one of gradient descent, by
analytically calculating the gradients of an objective function
with respect to the source locations.

The Eikonal equation is not just used in seismology, but
numerous other domains of wave physics such as optics [9],
medical imagery [6] and video-game rendering [11]. It is
expected that EikoNet would be just as suitable in these fields.

The computational cost of predicting the travel-time from
a source to receiver location is equal to the time required to
pass across the network (4.047× 10−4s per source-point pair
on a single 2.3GHz Intel Core i5 CPU). The low computation
cost of a forward prediction means that the neural-network

model can be used to significantly increase the computation
speed of typically used ray-based procedures. Our approach
is massively parallel and very well suited for GPUs (taking
0.424s for 106 source-point pairs on a single Nvidia Tesla
V100).

ACKNOWLEDGMENT

EikoNet is avaliable at github
https://github.com/Ulvetanna/EikoNet.

This project was partly supported by a grant from the USGS.
K. Azizzadenesheli gratefully acknowledge the financial sup-
port of Raytheon and Amazon Web Services. We would like
to thank Jack Muir for interesting discussions about finite-
difference methods and limitations.

REFERENCES

[1] L. Bar, and N. Sochen, 2019, Unsupervised deep learning algo-
rithm for PDE-based forward and inverse problems, arXiv preprint
arXiv:1904.05417.

[2] A. Capozzoli, C. Curcio, A. Liseno and S. Savarese, 2013, A comparison
of Fast Marching, Fast Sweeping and Fast Iterative Methods for the
solution of the eikonal equation, 2013 21st Telecommunications Forum
Telfor (TELFOR), 685–688

SUBMITTED TO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 11

-2
10

Lo
ss

-3
10

-4
10

-5
10

0 25 50 75 100 120 150 175 200
Epoch

Validation Loss - Transfer Learning
Training Loss - Transfer Learning
Testing Loss - Transfer Learning

Training Loss - Full Training
Testing Loss - Full Training

Validation Loss - Full Training

Epoch: 1 Epoch: 10

20

10

0

2010020100201002010
X X X X

Z

Z

X
020100

20

10

0

4 5
Velocity

6

Epoch: 50 Epoch: 100
Full Training

Transfer LearningOriginal Model

(a)

(b)

Fig. 7. Effects of Transfer Learning on the training loss for the Block model velocity experiment. (a) Training snapshots of a full-training procedure and
transfer learning from Homogenous model. Rows represent the full-training and transfer learning approaches respectively. Columns represent the snapshot of
the velocity model for a series of training epochs.

[3] DA. Clevert, T. Unterthiner, and S. Hochreiter, 2015, Fast and
Accurate Deep Network Learning by Exponential Linear Units
(ELUs),arXiv,arXiv:1511.07289

[4] S. Das, 2012, Three-dimensional spontaneous rupture propagation and
implications for the earthquake source mechanism, Geophysical Journal
International, Volume 67, Issue 2, November 1981, Pages 375â393.

[5] P.M.R. DeVries, T. Thompson, T. Ben, and B.J. Meade, 2017, Enabling
large-scale viscoelastic calculations via neural network acceleration,
Geophysical Research Letters, 44, 2662 – 2669, 10.1002/2017GL072716.

[6] M. Droske, B. Meyer, M. Rumpf, and C.Schaller, 2001, An Adaptive Level
Set Method for Medical Image Segmentation, Information Processing in
Medical Imaging, Springer Berlin Heidelberg, 416–422.

[7] X. Guo, W. Li, and F. Iorio, 2016, Convolutional Neural Networks for
Steady Flow Approximation,P roceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
481â490, 10.1145/2939672.2939738

[8] E. Hauksson, W. Yang, and P.M. Shearer, 2012, Waveform Relocated
Earthquake Catalog for Southern California (1981 to 2011), Bull. Seis-
mol. Soc. Am., Vol. 2012, doi: 10.1785/0120120010.

[9] J.A. Hoffnagle, and D.L. Shealy, 2011, Refracting the k-function:
Stavroudisâs solution to the eikonal equation for multielement optical
systems, JOSA, 28, 1312-1321.

[10] F. Huang, J.T. Ash, J. Langford, and R.E. Schapire, 2017, Learning deep
resnet blocks sequentially using boosting theory. CoRR abs/1706.04964.

[11] I. Ihrke, G. Ziegler, A. Tevs, C. Theobalt, M. Magnor, and H.P. Seidel,
2007, Eikonal rendering: Efficient light transport in refractive objects,
ACM Transactions on Graphics (TOG), 26(3), 59-es.

[12] D. Kingma, and J. Ba, 2015, Adam: A method for stochastic optimiza-
tion, International Conference on Learning Representations (ICLR).

[13] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stu-
art, and A. Anandkumar, 2020, Neural Operator: Graph Kernel Network
for Partial Differential equations, arXiv preprint arXiv:2003.03485.

[14] G.S. Martin, R. Wiley, and K.J. Marfurt, 2006, Marmousi2: An elastic

upgrade for Marmousi, Leading Edge, Volume 25, pages 156–166,
10.1190/1.2172306

[15] B. Moseley, A. Markman,and T. Nissen-Meyer, 2018, Fast approximate
simulation of seismic waves with deep learning, ArXiv, 1807.06873.

[16] V. Nair, and G.E. Hinton, 2010, Rectified linear units improve restricted
boltzmann machines, Proceedings of the 27th International Conference
on International Conference on Machine Learning (ICMLâ10), 807â814.

[17] M.M. Noack and S. Clark, 2017, Acoustic wave and eikonal equations
in a transformed metric space for various types of anisotropy Heliyon,
3.

[18] P. Podvin, and I. Lecomte, 1991. Finite difference computation of
traveltimes in very contrasted velocity models: a massively parallel
approach and its associated tools, Geophys. J. Int., 105, 271â284.

[19] M. Raissi, P. Perdikaris and G. E. Karniadakis, 2019, physics-informed
neural networks: A deep learning framework for solving forward and in-
verse problems involving nonlinear partial differential equations, Journal
of Computational physics, 378, 686-707.

[20] N. Rawlinson, and M. Sambridge, 2004, Wave front evolution in strongly
heterogeneous layered media using the fast marching method, Geophys-
ical Journal International, Volume 156, Issue 3, Pages 631â647

[21] N. Rawlinson, M. Sambridge and J. Hauser, 2010, Multipathing,
reciprocal traveltime fields and raylets, Geophysical Journal International,
181, 2, 1077–1092.

[22] S.H. Rudy, S. L. Burton, J. L. Proctor and J. N. Kutz, 2017, Data-driven
discovery of partial differential equations, Science Advances, 3.

[23] J.A. Sethian, 1996, A fast marching level set method for monotonically
advancing fronts, Proceedings of the National Academy of Sciences, Feb
1996, 93 (4) 1591-1595.

[24] E. F. Williams, M. R. Fernández-Ruiz, R. Magalhaes, R. Vanthillo, Z.
Zhan, M. González-Herráez, and H. F. Martins, Nature Communications,
2019, 10 (1) 1-11.

[25] E. Treister and E. Halder, 2016, A fast marching algorithm for the

SUBMITTED TO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 12

factored eikonal equation, Journal of Computational physics, 324, 210-
225.

[26] R. Versteeg, 1994, The Marmousi experience: Velocity model determi-
nation on a synthetic complex data set, The Leading Edge.

[27] J.E. Vidale, 1988, Finite-difference traveltime calculation, Seis. Sot.
Am., 78, 2062-2076.

[28] E. Weinan, and Y. Bing, 2018, The deep Ritz method: a deep learning-
based numerical algorithm for solving variational problems, Communi-
cations in Mathematics and Statistics, 6, 1–12.

[29] H. Zhang, C. Thurber, and P.A. Bedrosian, 2009, Joint inversion for
Vp, Vs, and Vp/Vs at SAFOD, Parkfield, California., Geochem. Geophys.
Geosyst.,10(11):Q11002, doi:10.1029/2009GC002709.

[30] H. Zhao, 2004, A Fast Sweeping Method for Eikonal equations, Math-
ematics and Computation, Volume 74, Number 250, Pages 603â627,

[31] Y. Zhu, and N. Zabaras, 2018, Bayesian deep convolutional encoderde-
coder networks for surrogate modeling and uncertainty quantification,
Journal of Computational Physics, 366, 415 – 447

	Introduction
	Eikonal Formulation
	Methods
	Network architecture and training
	Building a training dataset
	Random Distance
	Random Locations
	Weighted Sampling

	Model verification

	Baselines
	Velocity Model Experiments
	Homogeneous Velocity
	Graded Velocity
	Block Model
	Checkerboard Velocity
	Industry velocity Model - Marmousi2

	Sampling Experiments
	Sampling Schemes
	Size of training dataset

	Future Applications
	Earthquake Location
	Ray Multipathing
	Tomographic Modeling

	Discussion and Conclusion
	References

